Papers
Deep Joint Task Learning for Generic Object Extraction
- intro: NIPS 2014
- homepage: http://vision.sysu.edu.cn/projects/deep-joint-task-learning/
- paper: http://ss.sysu.edu.cn/~ll/files/NIPS2014_JointTask.pdf
- github: https://github.com/xiaolonw/nips14_loc_seg_testonly
- dataset: http://objectextraction.github.io/
Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification
- arxiv: https://arxiv.org/abs/1412.4526
- code(Caffe): https://dl.dropboxusercontent.com/u/6448899/caffe.zip
- author page: http://www.ee.cuhk.edu.hk/~hsli/
U-Net
U-Net: Convolutional Networks for Biomedical Image Segmentation
- intro: conditionally accepted at MICCAI 2015
- project page: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
- arxiv: http://arxiv.org/abs/1505.04597
- code+data: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/u-net-release-2015-10-02.tar.gz
- github: https://github.com/orobix/retina-unet
- github: https://github.com/jakeret/tf_unet
- notes: http://zongwei.leanote.com/post/Pa
Segmentation from Natural Language Expressions
- intro: ECCV 2016
- project page: http://ronghanghu.com/text_objseg/
- arxiv: http://arxiv.org/abs/1603.06180
- github(TensorFlow): https://github.com/ronghanghu/text_objseg
- gtihub(Caffe): https://github.com/Seth-Park/text_objseg_caffe
Semantic Object Parsing with Graph LSTM
Fine Hand Segmentation using Convolutional Neural Networks
Feedback Neural Network for Weakly Supervised Geo-Semantic Segmentation
- intro: Facebook Connectivity Lab & Facebook Core Data Science & University of Illinois
- arxiv: https://arxiv.org/abs/1612.02766
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation
Texture segmentation with Fully Convolutional Networks
- intro: Dublin City University
- arxiv: https://arxiv.org/abs/1703.05230
Fast LIDAR-based Road Detection Using Convolutional Neural Networks
https://arxiv.org/abs/1703.03613
Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs
Annotating Object Instances with a Polygon-RNN
- intro: CVPR 2017. CVPR Best Paper Honorable Mention Award. University of Toronto
- project page: http://www.cs.toronto.edu/polyrnn/
- arxiv: https://arxiv.org/abs/1704.05548
Nighttime sky/cloud image segmentation
- intro: ICIP 2017
- arxiv: https://arxiv.org/abs/1705.10583
Foreground Object Segmentation
Pixel Objectness
- project page: http://vision.cs.utexas.edu/projects/pixelobjectness/
- arxiv: https://arxiv.org/abs/1701.05349
- github: https://github.com/suyogduttjain/pixelobjectness
A Deep Convolutional Neural Network for Background Subtraction
Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
- intro: CVPR 2015, PAMI 2016
- keywords: deconvolutional layer, crop layer
- arxiv: http://arxiv.org/abs/1411.4038
- arxiv(PAMI 2016): http://arxiv.org/abs/1605.06211
- slides: https://docs.google.com/presentation/d/1VeWFMpZ8XN7OC3URZP4WdXvOGYckoFWGVN7hApoXVnc
- slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-pixels.pdf
- talk: http://techtalks.tv/talks/fully-convolutional-networks-for-semantic-segmentation/61606/
- github(official): https://github.com/shelhamer/fcn.berkeleyvision.org
- github: https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn
- github: https://github.com/MarvinTeichmann/tensorflow-fcn
- github(Chainer): https://github.com/wkentaro/fcn
- github(PyTorch): https://github.com/wkentaro/pytorch-fcn
- github(Tensorflow): https://github.com/shekkizh/FCN.tensorflow
- notes: http://zhangliliang.com/2014/11/28/paper-note-fcn-segment/
From Image-level to Pixel-level Labeling with Convolutional Networks
- intro: CVPR 2015
- intro: “Weakly Supervised Semantic Segmentation with Convolutional Networks”
- intro: performs semantic segmentation based only on image-level annotations in a multiple instance learning framework
- arxiv: http://arxiv.org/abs/1411.6228
- paper: http://ronan.collobert.com/pub/matos/2015_semisupsemseg_cvpr.pdf
Feedforward semantic segmentation with zoom-out features
- intro: CVPR 2015. Toyota Technological Institute at Chicago
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mostajabi_Feedforward_Semantic_Segmentation_2015_CVPR_paper.pdf
- bitbuckt: https://bitbucket.org/m_mostajabi/zoom-out-release
- video: https://www.youtube.com/watch?v=HvgvX1LXQa8
DeepLab
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
- intro: ICLR 2015. DeepLab
- arxiv: http://arxiv.org/abs/1412.7062
- bitbucket: https://bitbucket.org/deeplab/deeplab-public/
- github: https://github.com/TheLegendAli/DeepLab-Context
Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation
- intro: DeepLab
- arxiv: http://arxiv.org/abs/1502.02734
- bitbucket: https://bitbucket.org/deeplab/deeplab-public/
- github: https://github.com/TheLegendAli/DeepLab-Context
DeepLab v2
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
- intro: TPAMI
- intro: 79.7% mIOU in the test set, PASCAL VOC-2012 semantic image segmentation task
- intro: Updated version of our previous ICLR 2015 paper
- project page: http://liangchiehchen.com/projects/DeepLab.html
- arxiv: https://arxiv.org/abs/1606.00915
- bitbucket: https://bitbucket.org/aquariusjay/deeplab-public-ver2
- github: https://github.com/DrSleep/tensorflow-deeplab-resnet
- github: https://github.com/isht7/pytorch-deeplab-resnet
DeepLabv2 (ResNet-101)
http://liangchiehchen.com/projects/DeepLabv2_resnet.html
DeepLab v3
Rethinking Atrous Convolution for Semantic Image Segmentation
- intro: Google. DeepLabv3
- arxiv: https://arxiv.org/abs/1706.05587
CRF-RNN
Conditional Random Fields as Recurrent Neural Networks
- intro: ICCV 2015. Oxford / Stanford / Baidu
- project page: http://www.robots.ox.ac.uk/~szheng/CRFasRNN.html
- arxiv: http://arxiv.org/abs/1502.03240
- github: https://github.com/torrvision/crfasrnn
- demo: http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
- github: https://github.com/martinkersner/train-CRF-RNN
BoxSup
BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation
Efficient piecewise training of deep structured models for semantic segmentation
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1504.01013
DeconvNet
Learning Deconvolution Network for Semantic Segmentation
- intro: ICCV 2015. DeconvNet
- intro: two-stage training: train the network with easy examples first and fine-tune the trained network with more challenging examples later
- project page: http://cvlab.postech.ac.kr/research/deconvnet/
- arxiv: http://arxiv.org/abs/1505.04366
- slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w06-deconvnet.pdf
- gitxiv: http://gitxiv.com/posts/9tpJKNTYksN5eWcHz/learning-deconvolution-network-for-semantic-segmentation
- github: https://github.com/HyeonwooNoh/DeconvNet
- github: https://github.com/HyeonwooNoh/caffe
SegNet
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
- arxiv: http://arxiv.org/abs/1505.07293
- github: https://github.com/alexgkendall/caffe-segnet
- github: https://github.com/pfnet-research/chainer-segnet
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
- homepage: http://mi.eng.cam.ac.uk/projects/segnet/
- arxiv: http://arxiv.org/abs/1511.00561
- github: https://github.com/alexgkendall/caffe-segnet
- tutorial: http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
SegNet: Pixel-Wise Semantic Labelling Using a Deep Networks
Getting Started with SegNet
- blog: http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
- github: https://github.com/alexgkendall/SegNet-Tutorial
ParseNet
ParseNet: Looking Wider to See Better
- intro:ICLR 2016
- arxiv: http://arxiv.org/abs/1506.04579
- github: https://github.com/weiliu89/caffe/tree/fcn
- caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#parsenet-looking-wider-to-see-better
DecoupledNet
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
- intro: ICLR 2016
- project(paper+code): http://cvlab.postech.ac.kr/research/decouplednet/
- arxiv: http://arxiv.org/abs/1506.04924
- github: https://github.com/HyeonwooNoh/DecoupledNet
Semantic Image Segmentation via Deep Parsing Network
- intro: ICCV 2015. CUHK
- keywords: Deep Parsing Network (DPN), Markov Random Field (MRF)
- homepage: http://personal.ie.cuhk.edu.hk/~lz013/projects/DPN.html
- arxiv.org: http://arxiv.org/abs/1509.02634
- paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Liu_Semantic_Image_Segmentation_ICCV_2015_paper.pdf
- slides: http://personal.ie.cuhk.edu.hk/~pluo/pdf/presentation_dpn.pdf
Multi-Scale Context Aggregation by Dilated Convolutions
- intro: ICLR 2016.
- intro: Dilated Convolution for Semantic Image Segmentation
- homepage: http://vladlen.info/publications/multi-scale-context-aggregation-by-dilated-convolutions/
- arxiv: http://arxiv.org/abs/1511.07122
- github: https://github.com/fyu/dilation
- github: https://github.com/nicolov/segmentation_keras
- notes: http://www.inference.vc/dilated-convolutions-and-kronecker-factorisation/
Instance-aware Semantic Segmentation via Multi-task Network Cascades
- intro: CVPR 2016 oral. 1st-place winner of MS COCO 2015 segmentation competition
- keywords: RoI warping layer, Multi-task Network Cascades (MNC)
- arxiv: http://arxiv.org/abs/1512.04412
- github: https://github.com/daijifeng001/MNC
Object Segmentation on SpaceNet via Multi-task Network Cascades (MNC)
- blog: https://medium.com/the-downlinq/object-segmentation-on-spacenet-via-multi-task-network-cascades-mnc-f1c89d790b42
- github: https://github.com/lncohn/pascal_to_spacenet
Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network
- intro: TransferNet
- project page: http://cvlab.postech.ac.kr/research/transfernet/
- arxiv: http://arxiv.org/abs/1512.07928
- github: https://github.com/maga33/TransferNet
Combining the Best of Convolutional Layers and Recurrent Layers: A Hybrid Network for Semantic Segmentation
Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation
- intro: ECCV 2016
- arxiv: https://arxiv.org/abs/1603.06098
- github: https://github.com/kolesman/SEC
ScribbleSup
ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation
- project page: http://research.microsoft.com/en-us/um/people/jifdai/downloads/scribble_sup/
- arxiv: http://arxiv.org/abs/1604.05144
Laplacian Reconstruction and Refinement for Semantic Segmentation
Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation
- intro: ECCV 2016
- arxiv: https://arxiv.org/abs/1605.02264
- paper: https://www.ics.uci.edu/~fowlkes/papers/gf-eccv16.pdf
- github(MatConvNet): https://github.com/golnazghiasi/LRR
Natural Scene Image Segmentation Based on Multi-Layer Feature Extraction
Convolutional Random Walk Networks for Semantic Image Segmentation
ENet
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
- arxiv: http://arxiv.org/abs/1606.02147
- github: https://github.com/e-lab/ENet-training
- github(Caffe): https://github.com/TimoSaemann/ENet
- github: https://github.com/PavlosMelissinos/enet-keras
- github: https://github.com/kwotsin/TensorFlow-ENet
- blog: http://culurciello.github.io/tech/2016/06/20/training-enet.html
Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery
Deep Learning Markov Random Field for Semantic Segmentation
Region-based semantic segmentation with end-to-end training
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1607.07671
Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1609.00446
PixelNet
PixelNet: Towards a General Pixel-level Architecture
- intro: semantic segmentation, edge detection
- arxiv: http://arxiv.org/abs/1609.06694
Exploiting Depth from Single Monocular Images for Object Detection and Semantic Segmentation
- intro: IEEE T. Image Processing
- intro: propose an RGB-D semantic segmentation method which applies a multi-task training scheme: semantic label prediction and depth value regression
- arxiv: https://arxiv.org/abs/1610.01706
PixelNet: Representation of the pixels, by the pixels, and for the pixels
- intro: CMU & Adobe Research
- project page: http://www.cs.cmu.edu/~aayushb/pixelNet/
- arxiv: https://arxiv.org/abs/1702.06506
- github(Caffe): https://github.com/aayushbansal/PixelNet
Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks
Deep Structured Features for Semantic Segmentation
CNN-aware Binary Map for General Semantic Segmentation
- intro: ICIP 2016 Best Paper / Student Paper Finalist
- arxiv: https://arxiv.org/abs/1609.09220
Efficient Convolutional Neural Network with Binary Quantization Layer
Mixed context networks for semantic segmentation
- intro: Hikvision Research Institute
- arxiv: https://arxiv.org/abs/1610.05854
High-Resolution Semantic Labeling with Convolutional Neural Networks
Gated Feedback Refinement Network for Dense Image Labeling
- intro: CVPR 2017
- paper: http://www.cs.umanitoba.ca/~ywang/papers/cvpr17.pdf
RefineNet
RefineNet: Multi-Path Refinement Networks with Identity Mappings for High-Resolution Semantic Segmentation
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
- intro: CVPR 2017. IoU 83.4% on PASCAL VOC 2012
- arxiv: https://arxiv.org/abs/1611.06612
- github: https://github.com/guosheng/refinenet
- leaderboard: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6#KEY_Multipath-RefineNet-Res152
Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes
- keywords: Full-Resolution Residual Units (FRRU), Full-Resolution Residual Networks (FRRNs)
- arxiv: https://arxiv.org/abs/1611.08323
- github(Theano/Lasagne): https://github.com/TobyPDE/FRRN
- youtube: https://www.youtube.com/watch?v=PNzQ4PNZSzc
Semantic Segmentation using Adversarial Networks
- intro: Facebook AI Research & INRIA. NIPS Workshop on Adversarial Training, Dec 2016, Barcelona, Spain
- arxiv: https://arxiv.org/abs/1611.08408
- github(Chainer): https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks
Improving Fully Convolution Network for Semantic Segmentation
The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation
- intro: Montreal Institute for Learning Algorithms & Ecole Polytechnique de Montreal
- arxiv: https://arxiv.org/abs/1611.09326
- github: https://github.com/SimJeg/FC-DenseNet
- github: https://github.com/titu1994/Fully-Connected-DenseNets-Semantic-Segmentation
- github(Keras): https://github.com/0bserver07/One-Hundred-Layers-Tiramisu
Training Bit Fully Convolutional Network for Fast Semantic Segmentation
- intro: Megvii
- arxiv: https://arxiv.org/abs/1612.00212
Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection
- intro: “an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. “
- arxiv: https://arxiv.org/abs/1612.01337
Diverse Sampling for Self-Supervised Learning of Semantic Segmentation
Mining Pixels: Weakly Supervised Semantic Segmentation Using Image Labels
- intro: Nankai University & University of Oxford & NUS
- arxiv: https://arxiv.org/abs/1612.02101
FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation
Understanding Convolution for Semantic Segmentation
- intro: UCSD & CMU & UIUC & TuSimple
- arxiv: https://arxiv.org/abs/1702.08502
- pretrained-models: https://drive.google.com/drive/folders/0B72xLTlRb0SoREhISlhibFZTRmM
Label Refinement Network for Coarse-to-Fine Semantic Segmentation
https://www.arxiv.org/abs/1703.00551
Predicting Deeper into the Future of Semantic Segmentation
- intro: Facebook AI Research
- arxiv: https://arxiv.org/abs/1703.07684
Guided Perturbations: Self Corrective Behavior in Convolutional Neural Networks
- intro: University of Maryland & GE Global Research Center
- arxiv: https://arxiv.org/abs/1703.07928
Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade
- intro: CVPR 2017 spotlight paper
- arxxiv: https://arxiv.org/abs/1704.01344
Large Kernel Matters – Improve Semantic Segmentation by Global Convolutional Network
https://arxiv.org/abs/1703.02719
Loss Max-Pooling for Semantic Image Segmentation
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1704.02966
Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation
https://arxiv.org/abs/1704.03593
A Review on Deep Learning Techniques Applied to Semantic Segmentation
https://arxiv.org/abs/1704.06857
Joint Semantic and Motion Segmentation for dynamic scenes using Deep Convolutional Networks
- intro: [International Institute of Information Technology & Max Planck Institute For Intelligent Systems
- arxiv: https://arxiv.org/abs/1704.08331
ICNet
ICNet for Real-Time Semantic Segmentation on High-Resolution Images
- intro: CUHK & Sensetime
- project page: https://hszhao.github.io/projects/icnet/
- arxiv: https://arxiv.org/abs/1704.08545
- github: https://github.com/hszhao/ICNet
- video: https://www.youtube.com/watch?v=qWl9idsCuLQ
LinkNet
Feature Forwarding: Exploiting Encoder Representations for Efficient Semantic Segmentation
LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation
- project page: https://codeac29.github.io/projects/linknet/
- arxiv: https://arxiv.org/abs/1707.03718
- github: https://github.com/e-lab/LinkNet
Pixel Deconvolutional Networks
- intro: Washington State University
- arxiv: https://arxiv.org/abs/1705.06820
Incorporating Network Built-in Priors in Weakly-supervised Semantic Segmentation
- intro: IEEE TPAMI
- arxiv: https://arxiv.org/abs/1706.02189
Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and Challenges
- intro: IEEE ITSC 2017
- arxiv: https://arxiv.org/abs/1707.02432
Semantic Segmentation with Reverse Attention
- intro: BMVC 2017 oral. University of Southern California
- arxiv: https://arxiv.org/abs/1707.06426
Instance Segmentation
Simultaneous Detection and Segmentation
- intro: ECCV 2014
- author: Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik
- arxiv: http://arxiv.org/abs/1407.1808
- github(Matlab): https://github.com/bharath272/sds_eccv2014
Convolutional Feature Masking for Joint Object and Stuff Segmentation
- intro: CVPR 2015
- keywords: masking layers
- arxiv: https://arxiv.org/abs/1412.1283
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Dai_Convolutional_Feature_Masking_2015_CVPR_paper.pdf
Proposal-free Network for Instance-level Object Segmentation
Hypercolumns for object segmentation and fine-grained localization
- intro: CVPR 2015
- arxiv: https://arxiv.org/abs/1411.5752
- paper: http://www.cs.berkeley.edu/~bharath2/pubs/pdfs/BharathCVPR2015.pdf
SDS using hypercolumns
Learning to decompose for object detection and instance segmentation
- intro: ICLR 2016 Workshop
- keyword: CNN / RNN, MNIST, KITTI
- arxiv: http://arxiv.org/abs/1511.06449
Recurrent Instance Segmentation
- intro: ECCV 2016
- porject page: http://romera-paredes.com/ris
- arxiv: http://arxiv.org/abs/1511.08250
- github(Torch): https://github.com/bernard24/ris
- poster: http://www.eccv2016.org/files/posters/P-4B-46.pdf
- youtube: https://www.youtube.com/watch?v=l_WD2OWOqBk
Instance-sensitive Fully Convolutional Networks
- intro: ECCV 2016. instance segment proposal
- arxiv: http://arxiv.org/abs/1603.08678
Amodal Instance Segmentation
- intro: ECCV 2016
- arxiv: http://arxiv.org/abs/1604.08202
Bridging Category-level and Instance-level Semantic Image Segmentation
- keywords: online bootstrapping
- arxiv: http://arxiv.org/abs/1605.06885
Bottom-up Instance Segmentation using Deep Higher-Order CRFs
- intro: BMVC 2016
- arxiv: http://arxiv.org/abs/1609.02583
DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks
End-to-End Instance Segmentation and Counting with Recurrent Attention
- intro: ReInspect
- arxiv: http://arxiv.org/abs/1605.09410
TA-FCN / FCIS
Translation-aware Fully Convolutional Instance Segmentation
Fully Convolutional Instance-aware Semantic Segmentation
- intro: CVPR 2017 Spotlight paper. winning entry of COCO segmentation challenge 2016
- arxiv: https://arxiv.org/abs/1611.07709
- github: https://github.com/msracver/FCIS
- slides: https://onedrive.live.com/?cid=f371d9563727b96f&id=F371D9563727B96F%2197213&authkey=%21AEYOyOirjIutSVk
InstanceCut: from Edges to Instances with MultiCut
Deep Watershed Transform for Instance Segmentation
Object Detection Free Instance Segmentation With Labeling Transformations
Shape-aware Instance Segmentation
Interpretable Structure-Evolving LSTM
- intro: CMU & Sun Yat-sen University & National University of Singapore & Adobe Research
- intro: CVPR 2017 spotlight paper
- arxiv: https://arxiv.org/abs/1703.03055
Mask R-CNN
- intro: Facebook AI Research
- arxiv: https://arxiv.org/abs/1703.06870
- github(TensorFlow): https://github.com/CharlesShang/FastMaskRCNN
Semantic Instance Segmentation via Deep Metric Learning
https://arxiv.org/abs/1703.10277
Pose2Instance: Harnessing Keypoints for Person Instance Segmentation
https://arxiv.org/abs/1704.01152
Pixelwise Instance Segmentation with a Dynamically Instantiated Network
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1704.02386
Instance-Level Salient Object Segmentation
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1704.03604
Semantic Instance Segmentation with a Discriminative Loss Function
- intro: Published at “Deep Learning for Robotic Vision”, workshop at CVPR 2017. KU Leuven
- arxiv: https://arxiv.org/abs/1708.02551
Specific Segmentation
A CNN Cascade for Landmark Guided Semantic Part Segmentation
- project page: http://aaronsplace.co.uk/
- paper: https://aaronsplace.co.uk/papers/jackson2016guided/jackson2016guided.pdf
End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks
Face Parsing via Recurrent Propagation
- intro: BMVC 2017
- arxiv: https://arxiv.org/abs/1708.01936
Face Parsing via a Fully-Convolutional Continuous CRF Neural Network
https://arxiv.org/abs/1708.03736
Segment Proposal
Learning to Segment Object Candidates
- intro: Facebook AI Research (FAIR)
- intro: DeepMask. learning segmentation proposals
- arxiv: http://arxiv.org/abs/1506.06204
- github: https://github.com/facebookresearch/deepmask
- github: https://github.com/abbypa/NNProject_DeepMask
Learning to Refine Object Segments
- intro: ECCV 2016. Facebook AI Research (FAIR)
- intro: SharpMask. an extension of DeepMask which generates higher-fidelity masks using an additional top-down refinement step.
- arxiv: http://arxiv.org/abs/1603.08695
- github: https://github.com/facebookresearch/deepmask
FastMask: Segment Object Multi-scale Candidates in One Shot
- intro: CVPR 2017. University of California & Fudan University & Megvii Inc.
- arxiv: https://arxiv.org/abs/1612.08843
- github: https://github.com/voidrank/FastMask
Scene Labeling / Scene Parsing
Indoor Semantic Segmentation using depth information
Recurrent Convolutional Neural Networks for Scene Parsing
- arxiv: http://arxiv.org/abs/1306.2795
- slides: http://people.ee.duke.edu/~lcarin/Yizhe8.14.2015.pdf
- github: https://github.com/NP-coder/CLPS1520Project
- github: https://github.com/rkargon/Scene-Labeling
Learning hierarchical features for scene labeling
Multi-modal unsupervised feature learning for rgb-d scene labeling
- intro: ECCV 2014
- paper: http://www3.ntu.edu.sg/home/wanggang/WangECCV2014.pdf
Scene Labeling with LSTM Recurrent Neural Networks
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
- arxiv: http://arxiv.org/abs/1603.08575
- notes: http://www.shortscience.org/paper?bibtexKey=journals/corr/EslamiHWTKH16
“Semantic Segmentation for Scene Understanding: Algorithms and Implementations” tutorial
- intro: 2016 Embedded Vision Summit
- youtube: https://www.youtube.com/watch?v=pQ318oCGJGY
Semantic Understanding of Scenes through the ADE20K Dataset
Learning Deep Representations for Scene Labeling with Guided Supervision
Learning Deep Representations for Scene Labeling with Semantic Context Guided Supervision
- intro: CUHK
- arxiv: https://arxiv.org/abs/1706.02493
MPF-RNN
Multi-Path Feedback Recurrent Neural Network for Scene Parsing
Scene Labeling using Recurrent Neural Networks with Explicit Long Range Contextual Dependency
PSPNet
Pyramid Scene Parsing Network
- intro: CVPR 2017
- intro: mIoU score as 85.4% on PASCAL VOC 2012 and 80.2% on Cityscapes, ranked 1st place in ImageNet Scene Parsing Challenge 2016
- project page: http://appsrv.cse.cuhk.edu.hk/~hszhao/projects/pspnet/index.html
- arxiv: https://arxiv.org/abs/1612.01105
- slides: http://image-net.org/challenges/talks/2016/SenseCUSceneParsing.pdf
- github: https://github.com/hszhao/PSPNet
Open Vocabulary Scene Parsing
https://arxiv.org/abs/1703.08769
Deep Contextual Recurrent Residual Networks for Scene Labeling
https://arxiv.org/abs/1704.03594
Fast Scene Understanding for Autonomous Driving
- intro: Published at “Deep Learning for Vehicle Perception”, workshop at the IEEE Symposium on Intelligent Vehicles 2017
- arxiv: https://arxiv.org/abs/1708.02550
FoveaNet: Perspective-aware Urban Scene Parsing
https://arxiv.org/abs/1708.02421
BlitzNet: A Real-Time Deep Network for Scene Understanding
- intro: INRIA
- arxiv: https://arxiv.org/abs/1708.02813
Benchmarks
MIT Scene Parsing Benchmark
- homepage: http://sceneparsing.csail.mit.edu/
- github(devkit): https://github.com/CSAILVision/sceneparsing
Semantic Understanding of Urban Street Scenes: Benchmark Suite
https://www.cityscapes-dataset.com/benchmarks/
Challenges
Large-scale Scene Understanding Challenge
- homepage: http://lsun.cs.princeton.edu/
Places2 Challenge
http://places2.csail.mit.edu/challenge.html
Human Parsing
Human Parsing with Contextualized Convolutional Neural Network
- intro: ICCV 2015
- paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Liang_Human_Parsing_With_ICCV_2015_paper.html
Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing
- intro: CVPr 2017. SYSU & CMU
- keywords: Look Into Person (LIP)
- project page: http://hcp.sysu.edu.cn/lip/
- arxiv: https://arxiv.org/abs/1703.05446
- github: https://github.com/Engineering-Course/LIP_SSL
Segmentation From Video
Fast object segmentation in unconstrained video
- project page: http://calvin.inf.ed.ac.uk/software/fast-video-segmentation/
- paper: http://calvin.inf.ed.ac.uk/wp-content/uploads/Publications/papazoglouICCV2013-camera-ready.pdf
Recurrent Fully Convolutional Networks for Video Segmentation
Object Detection, Tracking, and Motion Segmentation for Object-level Video Segmentation
Clockwork Convnets for Video Semantic Segmentation
- intro: ECCV 2016 Workshops
- intro: evaluated on the Youtube-Objects, NYUD, and Cityscapes video datasets
- arxiv: http://arxiv.org/abs/1608.03609
- github: https://github.com/shelhamer/clockwork-fcn
STFCN: Spatio-Temporal FCN for Semantic Video Segmentation
One-Shot Video Object Segmentation
- intro: OSVOS
- project: http://www.vision.ee.ethz.ch/~cvlsegmentation/osvos/
- arxiv: https://arxiv.org/abs/1611.05198
- github: https://github.com/kmaninis/OSVOS-caffe
- github: https://github.com/scaelles/OSVOS-TensorFlow
Convolutional Gated Recurrent Networks for Video Segmentation
Learning Video Object Segmentation from Static Images
Semantic Video Segmentation by Gated Recurrent Flow Propagation
FusionSeg: Learning to combine motion and appearance for fully automatic segmention of generic objects in videos
- project page: http://vision.cs.utexas.edu/projects/fusionseg/
- arxiv: https://arxiv.org/abs/1701.05384
- github: https://github.com/suyogduttjain/fusionseg
Unsupervised learning from video to detect foreground objects in single images
https://arxiv.org/abs/1703.10901
Semantically-Guided Video Object Segmentation
https://arxiv.org/abs/1704.01926
Learning Video Object Segmentation with Visual Memory
https://arxiv.org/abs/1704.05737
Flow-free Video Object Segmentation
https://arxiv.org/abs/1706.09544
Online Adaptation of Convolutional Neural Networks for Video Object Segmentation
https://arxiv.org/abs/1706.09364
Video Object Segmentation using Tracked Object Proposals
- intro: CVPR-2017 workshop, DAVIS-2017 Challenge
- arxiv: https://arxiv.org/abs/1707.06545
Video Object Segmentation with Re-identification
- intro: CVPR 2017 Workshop, DAVIS Challenge on Video Object Segmentation 2017 (Winning Entry)
- arxiv: https://arxiv.org/abs/1708.00197
Challenge
DAVIS: Densely Annotated VIdeo Segmentation
- homepage: http://davischallenge.org/
- arxiv: https://arxiv.org/abs/1704.00675
DAVIS Challenge on Video Object Segmentation 2017
http://davischallenge.org/challenge2017/publications.html
Projects
TF Image Segmentation: Image Segmentation framework
- intro: Image Segmentation framework based on Tensorflow and TF-Slim library
- github: https://github.com/warmspringwinds/tf-image-segmentation
KittiSeg: A Kitti Road Segmentation model implemented in tensorflow.
- keywords: MultiNet
- intro: KittiSeg performs segmentation of roads by utilizing an FCN based model.
- github: https://github.com/MarvinTeichmann/KittiBox
Semantic Segmentation Architectures Implemented in PyTorch
- intro: Segnet/FCN/U-Net/Link-Net
- github: https://github.com/meetshah1995/pytorch-semseg
3D Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
- intro: Stanford University
- project page: http://stanford.edu/~rqi/pointnet/
- arxiv: https://arxiv.org/abs/1612.00593
- github: https://github.com/charlesq34/pointnet
DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks
https://arxiv.org/abs/1703.03098
Leaderboard
Segmentation Results: VOC2012 BETA: Competition “comp6” (train on own data)
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?cls=mean&challengeid=11&compid=6
Blogs
Deep Learning for Natural Image Segmentation Priors
http://cs.brown.edu/courses/csci2951-t/finals/ghope/
Image Segmentation Using DIGITS 5
https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/
Image Segmentation with Tensorflow using CNNs and Conditional Random Fields http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/
Fully Convolutional Networks (FCNs) for Image Segmentation
- blog: http://warmspringwinds.github.io/tensorflow/tf-slim/2017/01/23/fully-convolutional-networks-(fcns)-for-image-segmentation/
- ipn: https://github.com/warmspringwinds/tensorflow_notes/blob/master/fully_convolutional_networks.ipynb
Image segmentation with Neural Net
- blog: https://medium.com/@m.zaradzki/image-segmentation-with-neural-net-d5094d571b1e#.s5f711g1q
- github: https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras
A 2017 Guide to Semantic Segmentation with Deep Learning
http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review
Talks
Deep learning for image segmentation
- intro: PyData Warsaw - Mateusz Opala & Michał Jamroż
- youtube: https://www.youtube.com/watch?v=W6r_a5crqGI