Papers
Max-margin Deep Generative Models
Discriminative Regularization for Generative Models
Auxiliary Deep Generative Models
- arxiv: http://arxiv.org/abs/1602.05473
- github: https://github.com/larsmaaloee/auxiliary-deep-generative-models
Sampling Generative Networks: Notes on a Few Effective Techniques
Conditional Image Synthesis With Auxiliary Classifier GANs
- arxiv: https://arxiv.org/abs/1610.09585
- github: https://github.com/buriburisuri/ac-gan
- github(Keras): https://github.com/lukedeo/keras-acgan
On the Quantitative Analysis of Decoder-Based Generative Models
- intro: University of Toronto & OpenAI & CMU
- arxiv: https://arxiv.org/abs/1611.04273
- github: https://github.com/tonywu95/eval_gen
Boosted Generative Models
An Architecture for Deep, Hierarchical Generative Models
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1612.04739
- github: https://github.com/Philip-Bachman/MatNets-NIPS
Deep Learning and Hierarchal Generative Models
- intro: MIT
- arxiv: https://arxiv.org/abs/1612.09057
Generative Adversarial Network
Generative Adversarial Networks
Generative Adversarial Nets
- arxiv: http://arxiv.org/abs/1406.2661
- paper: https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
- github: https://github.com/goodfeli/adversarial
- github: https://github.com/aleju/cat-generator
Adversarial Feature Learning
- intro: ICLR 2017
- arxiv: https://arxiv.org/abs/1605.09782
- github: https://github.com/jeffdonahue/bigan
Generative Adversarial Networks
- intro: by Ian Goodfellow, NIPS 2016 tutorial
- arxiv: https://arxiv.org/abs/1701.00160
- slides: http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf
- mirror: https://pan.baidu.com/s/1gfBNYW7
Adversarial Examples and Adversarial Training
- intro: NIPS 2016, Ian Goodfellow OpenAI
- slides: http://www.iangoodfellow.com/slides/2016-12-9-AT.pdf
How to Train a GAN? Tips and tricks to make GANs work
CatGAN
Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
DCGAN
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- arxiv: http://arxiv.org/abs/1511.06434
- github: https://github.com/jazzsaxmafia/dcgan_tensorflow
- github: https://github.com/Newmu/dcgan_code
- github: https://github.com/mattya/chainer-DCGAN
- github: https://github.com/soumith/dcgan.torch
- github: https://github.com/carpedm20/DCGAN-tensorflow
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- arxiv: https://arxiv.org/abs/1606.03657
- github: https://github.com/openai/InfoGAN
- github(Tensorflow): https://github.com/buriburisuri/supervised_infogan
Learning Interpretable Latent Representations with InfoGAN: A tutorial on implementing InfoGAN in Tensorflow
- blog: https://medium.com/@awjuliani/learning-interpretable-latent-representations-with-infogan-dd710852db46#.r0kur3aum
- github: https://gist.github.com/awjuliani/c9ecd8b37d33d6855cd4ed9aa16ce89f#file-infogan-tutorial-ipynb
Coupled Generative Adversarial Networks
EBGAN
Energy-based Generative Adversarial Network
- author: Junbo Zhao, Michael Mathieu, Yann LeCun
- arxiv: http://arxiv.org/abs/1609.03126
- github(Tensorflow): https://github.com/buriburisuri/ebgan
SeqGAN
SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
Connecting Generative Adversarial Networks and Actor-Critic Methods
Generative Adversarial Nets from a Density Ratio Estimation Perspective
Unrolled Generative Adversarial Networks
Generative Adversarial Networks as Variational Training of Energy Based Models
Multi-class Generative Adversarial Networks with the L2 Loss Function
Least Squares Generative Adversarial Networks
Inverting The Generator Of A Generative Adversarial Networ
- intro: NIPS 2016 Workshop on Adversarial Training
- arxiv: https://arxiv.org/abs/1611.05644
ml4a-invisible-cities
- project page: https://opendot.github.io/ml4a-invisible-cities/
- arxiv: https://github.com/opendot/ml4a-invisible-cities
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
Associative Adversarial Networks
- intro: NIPS 2016 Workshop on Adversarial Training
- arxiv: https://arxiv.org/abs/1611.06953
Temporal Generative Adversarial Nets
Handwriting Profiling using Generative Adversarial Networks
- intro: Accepted at The Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17 Student Abstract and Poster Program)
- arxiv: https://arxiv.org/abs/1611.08789
C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- intro: Constructive Machine Learning Workshop (CML) at NIPS 2016
- project page: http://mogren.one/publications/2016/c-rnn-gan/
- arxiv: https://arxiv.org/abs/1611.09904
- github: https://github.com/olofmogren/c-rnn-gan
Ensembles of Generative Adversarial Networks
- intro: NIPS 2016 Workshop on Adversarial Training
- arxiv: https://arxiv.org/abs/1612.00991
Improved generator objectives for GANs
- intro: NIPS 2016 Workshop on Adversarial Training
- arxiv: https://arxiv.org/abs/1612.02780
SGAN
Stacked Generative Adversarial Networks
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks
- intro: Google Brain & Google Research
- arxiv: https://arxiv.org/abs/1612.05424
AdaGAN: Boosting Generative Models
- intro: Max Planck Institute for Intelligent Systems & Google Brain
- arxiv: https://arxiv.org/abs/1701.02386
Towards Principled Methods for Training Generative Adversarial Networks
- intro: Courant Institute of Mathematical Sciences & Facebook AI Research
- arxiv: https://arxiv.org/abs/1701.04862
Wasserstein GAN
- intro: Courant Institute of Mathematical Sciences & Facebook AI Research
- arxiv: https://arxiv.org/abs/1701.07875
- github: https://github.com/martinarjovsky/WassersteinGAN
- github: https://github.com/Zardinality/WGAN-tensorflow
- github(Tensorflow/Keras): https://github.com/kuleshov/tf-wgan
- github: https://github.com/shekkizh/WassersteinGAN.tensorflow
- gist: https://gist.github.com/soumith/71995cecc5b99cda38106ad64503cee3
- reddit: https://www.reddit.com/r/MachineLearning/comments/5qxoaz/r_170107875_wasserstein_gan/
Improved Training of Wasserstein GANs
On the effect of Batch Normalization and Weight Normalization in Generative Adversarial Networks
On the Effects of Batch and Weight Normalization in Generative Adversarial Networks
Image-to-Image Translation
Pix2Pix
Image-to-Image Translation with Conditional Adversarial Networks
- project page: https://phillipi.github.io/pix2pix/
- arxiv: https://arxiv.org/abs/1611.07004
- github: https://github.com/phillipi/pix2pix
- github(TensorFlow): https://github.com/yenchenlin/pix2pix-tensorflow
- github(Chainer): https://github.com/mattya/chainer-pix2pix
- github(PyTorch): https://github.com/mrzhu-cool/pix2pix-pytorch
- github(Chainer): https://github.com/wuhuikai/chainer-pix2pix
Remastering Classic Films in Tensorflow with Pix2Pix
- blog: https://hackernoon.com/remastering-classic-films-in-tensorflow-with-pix2pix-f4d551fa0503#.6dmahnt8n
- github: https://github.com/awjuliani/Pix2Pix-Film
- model: https://drive.google.com/file/d/0B8x0IeJAaBccNFVQMkQ0QW15TjQ/view
Image-to-Image Translation in Tensorflow
- blog: http://affinelayer.com/pix2pix/index.html
- github: https://github.com/affinelayer/pix2pix-tensorflow
webcam pix2pix
https://github.com/memo/webcam-pix2pix-tensorflow
Unsupervised Image-to-Image Translation with Generative Adversarial Networks
- intro: Imperial College London & Indian Institute of Technology
- arxiv: https://arxiv.org/abs/1701.02676
Unsupervised Image-to-Image Translation Networks
https://arxiv.org/abs/1703.00848
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- arxiv: https://arxiv.org/abs/1703.10593
- github(Chainer): https://github.com/Aixile/chainer-cyclegan
CycleGAN and pix2pix in PyTorch
- intro: Image-to-image translation in PyTorch (e.g. horse2zebra, edges2cats, and more)
- github: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
Perceptual Adversarial Networks for Image-to-Image Transformation
https://arxiv.org/abs/1706.09138
Projects
Generative Adversarial Networks with Keras
Generative Adversarial Network Demo for Fresh Machine Learning #2
- youtube: https://www.youtube.com/watch?v=deyOX6Mt_As&feature=em-uploademail
- github: https://github.com/llSourcell/Generative-Adversarial-Network-Demo
- demo: http://cs.stanford.edu/people/karpathy/gan/
TextGAN: A generative adversarial network for text generation, written in TensorFlow.
cleverhans v0.1: an adversarial machine learning library
Deep Convolutional Variational Autoencoder w/ Adversarial Network
- intro: An implementation of the deep convolutional generative adversarial network, combined with a varational autoencoder
- github: https://github.com/staturecrane/dcgan_vae_torch
A versatile GAN(generative adversarial network) implementation. Focused on scalability and ease-of-use.
Blogs
Generative Adversial Networks Explained
Generative Adversarial Autoencoders in Theano
- blog: https://swarbrickjones.wordpress.com/2016/01/24/generative-adversarial-autoencoders-in-theano/
- github: https://github.com/mikesj-public/dcgan-autoencoder
An introduction to Generative Adversarial Networks (with code in TensorFlow)
- blog: http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
- github: https://github.com/AYLIEN/gan-intro
Difficulties training a Generative Adversarial Network
Are Energy-Based GANs any more energy-based than normal GANs?
http://www.inference.vc/are-energy-based-gans-actually-energy-based/
Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode: Plus a Tensorflow tutorial for implementing your own GAN
- blog: https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.rpiunhdjh
- gist: https://gist.github.com/awjuliani/8ebf356d03ffee139659807be7fa2611
Deep Learning Research Review Week 1: Generative Adversarial Nets
Stability of Generative Adversarial Networks
Instance Noise: A trick for stabilising GAN training
Generating Fine Art in 300 Lines of Code
- intro: DCGAN
- blog: https://medium.com/@richardherbert/generating-fine-art-in-300-lines-of-code-4d37218216a6#.63qm8ef9g
Talks / Videos
Generative Adversarial Network visualization
Resources
AdversarialNetsPapers: The classical Papers about adversial nets