Applications
DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations
Some like it hot - visual guidance for preference prediction
- arxiv: http://arxiv.org/abs/1510.07867
- demo: http://howhot.io/
Deep Learning Algorithms with Applications to Video Analytics for A Smart City: A Survey
Deep Relative Attributes
- intro: ACCV 2016
- arxiv: http://arxiv.org/abs/1512.04103
- github: https://github.com/yassersouri/ghiaseddin
Deep-Spying: Spying using Smartwatch and Deep Learning
Camera identification with deep convolutional networks
- key word: copyright infringement cases, ownership attribution
- arxiv: http://arxiv.org/abs/1603.01068
An Analysis of Deep Neural Network Models for Practical Applications
8 Inspirational Applications of Deep Learning
- intro: Colorization of Black and White Images, Adding Sounds To Silent Movies, Automatic Machine Translation Object Classification in Photographs, Automatic Handwriting Generation, Character Text Generation, Image Caption Generation, Automatic Game Playing
- blog: http://machinelearningmastery.com/inspirational-applications-deep-learning/
16 Open Source Deep Learning Models Running as Microservices
- intro: Places 365 Classifier, Deep Face Recognition, Real Estate Classifier, Colorful Image Colorization, Illustration Tagger, InceptionNet, Parsey McParseface, ArtsyNetworks
- blog: http://blog.algorithmia.com/2016/07/open-source-deep-learning-algorithm-roundup/
Makeup like a superstar: Deep Localized Makeup Transfer Network
- intro: IJCAI 2016
- arxiv: http://arxiv.org/abs/1604.07102
Deep Cascaded Bi-Network for Face Hallucination
- project page: http://mmlab.ie.cuhk.edu.hk/projects/CBN.html
- arxiv: http://arxiv.org/abs/1607.05046
DeepWarp: Photorealistic Image Resynthesis for Gaze Manipulation
- project page: http://yaroslav.ganin.net/static/deepwarp/
- arxiv: http://arxiv.org/abs/1607.07215
Autoencoding Blade Runner
- blog: https://medium.com/@Terrybroad/autoencoding-blade-runner-88941213abbe#.9kckqg7cq
- github: https://github.com/terrybroad/Learned-Sim-Autoencoder-For-Video-Frames
A guy trained a machine to “watch” Blade Runner. Then things got seriously sci-fi.
http://www.vox.com/2016/6/1/11787262/blade-runner-neural-network-encoding
Deep Convolution Networks for Compression Artifacts Reduction
- intro: ICCV 2015
- project page(code): http://mmlab.ie.cuhk.edu.hk/projects/ARCNN.html
- arxiv: http://arxiv.org/abs/1608.02778
Deep GDashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks
- intro: Deep Genomic Dashboard (Deep GDashboard)
- arxiv: http://arxiv.org/abs/1608.03644
Instagram photos reveal predictive markers of depression
How an Algorithm Learned to Identify Depressed Individuals by Studying Their Instagram Photos
IM2CAD
Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks
- paper: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/melicher
- github: https://github.com/cupslab/neural_network_cracking
Defeating Image Obfuscation with Deep Learning
Detecting Music BPM using Neural Networks
- keywords: BPM (Beats Per Minutes)
- blog: https://nlml.github.io/neural-networks/detecting-bpm-neural-networks/
- github: https://github.com/nlml/bpm
Generative Visual Manipulation on the Natural Image Manifold
- intro: ECCV 2016
- project page: https://people.eecs.berkeley.edu/~junyanz/projects/gvm/
- arxiv: http://arxiv.org/abs/1609.03552
- github: https://github.com/junyanz/iGAN
Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition
Deep Gold: Using Convolution Networks to Find Minerals
- blog: https://hackernoon.com/deep-gold-using-convolution-networks-to-find-minerals-aafdb37355df#.lgh95ub4a
- github: https://github.com/scottvallance/DeepGold
Predicting First Impressions with Deep Learning
Judging a Book By its Cover
- arxiv: https://arxiv.org/abs/1610.09204
- review: https://www.technologyreview.com/s/602807/deep-neural-network-learns-to-judge-books-by-their-covers/
Image Credibility Analysis with Effective Domain Transferred Deep Networks
A novel image tag completion method based on convolutional neural network
Learning Two-Branch Neural Networks for Image-Text Matching Tasks
https://arxiv.org/abs/1704.03470
Age Estimation
Deeply-Learned Feature for Age Estimation
Age and Gender Classification using Convolutional Neural Networks
- paper: http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf
- project page: http://www.openu.ac.il/home/hassner/projects/cnn_agegender/
- github: https://github.com/GilLevi/AgeGenderDeepLearning
Group-Aware Deep Feature Learning For Facial Age Estimation
Local Deep Neural Networks for Age and Gender Classification
https://arxiv.org/abs/1703.08497
Face Aging
Recurrent Face Aging
Face Aging With Conditional Generative Adversarial Networks
Emotion Recognition / Expression Recognition
Real-time emotion recognition for gaming using deep convolutional network features
Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns
- project page: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/
- paper: http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf
- github: https://gist.github.com/GilLevi/54aee1b8b0397721aa4b
- blog: https://gilscvblog.com/2017/01/31/emotion-recognition-in-the-wild-via-convolutional-neural-networks-and-mapped-binary-patterns/
DeXpression: Deep Convolutional Neural Network for Expression Recognition
DEX: Deep EXpectation of apparent age from a single image
- intro: ICCV 2015
- paper: https://www.vision.ee.ethz.ch/en/publications/papers/proceedings/eth_biwi_01229.pdf
- homepage: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
EmotioNet: EmotioNet: An accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild
- intro: CVPR 2016
- paper: http://cbcsl.ece.ohio-state.edu/cvpr16.pdf
- database: http://cbcsl.ece.ohio-state.edu/dbform_emotionet.html
How Deep Neural Networks Can Improve Emotion Recognition on Video Data
- intro: ICIP 2016
- arxiv: http://arxiv.org/abs/1602.07377
Peak-Piloted Deep Network for Facial Expression Recognition
Training Deep Networks for Facial Expression Recognition with Crowd-Sourced Label Distribution
A Recursive Framework for Expression Recognition: From Web Images to Deep Models to Game Dataset
FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition
EmotionNet Challenge
- homrepage: http://cbcsl.ece.ohio-state.edu/EmotionNetChallenge/index.html
- dataset: http://cbcsl.ece.ohio-state.edu/dbform_emotionet.html
Baseline CNN structure analysis for facial expression recognition
- intro: RO-MAN2016 Conference
- arxiv: https://arxiv.org/abs/1611.04251
Facial Expression Recognition using Convolutional Neural Networks: State of the Art
DAGER: Deep Age, Gender and Emotion Recognition Using Convolutional Neural Network
Deep generative-contrastive networks for facial expression recognition
https://arxiv.org/abs/1703.07140
Convolutional Neural Networks for Facial Expression Recognition
https://arxiv.org/abs/1704.06756
End-to-End Multimodal Emotion Recognition using Deep Neural Networks
- intro: Imperial College London
- arxiv: https://arxiv.org/abs/1704.08619
Spatial-Temporal Recurrent Neural Network for Emotion Recognition
https://arxiv.org/abs/1705.04515
Facial Emotion Detection Using Convolutional Neural Networks and Representational Autoencoder Units
https://arxiv.org/abs/1706.01509
Attribution Prediction
PANDA: Pose Aligned Networks for Deep Attribute Modeling
- intro: Facebook. CVPR 2014
- arxiv: http://arxiv.org/abs/1311.5591
- github: https://github.com/facebook/pose-aligned-deep-networks
Predicting psychological attributions from face photographs with a deep neural network
Learning Human Identity from Motion Patterns
Pose Estimation
DeepPose: Human Pose Estimation via Deep Neural Networks
- intro: CVPR 2014
- arxiv: http://arxiv.org/abs/1312.4659
- slides: http://140.122.184.143/paperlinks/Slides/DeepPose_HumanPose_Estimation_via_Deep_Neural_Networks.pptx
- github: https://github.com/asanakoy/deeppose_tf
Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network
Flowing ConvNets for Human Pose Estimation in Videos
- arxiv: http://arxiv.org/abs/1506.02897
- homepage: http://www.robots.ox.ac.uk/~vgg/software/cnn_heatmap/
- github: https://github.com/tpfister/caffe-heatmap
Structured Feature Learning for Pose Estimation
- arxiv: http://arxiv.org/abs/1603.09065
- homepage: http://www.ee.cuhk.edu.hk/~xgwang/projectpage_structured_feature_pose.html
Convolutional Pose Machines
- arxiv: http://arxiv.org/abs/1602.00134
- github: https://github.com/shihenw/convolutional-pose-machines-release
- github(PyTorch): https://github.com/tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation
Model-based Deep Hand Pose Estimation
Stacked Hourglass Networks for Human Pose Estimation
- homepage: http://www-personal.umich.edu/~alnewell/pose/
- arxiv: http://arxiv.org/abs/1603.06937
- github: https://github.com/anewell/pose-hg-train
- demo: https://github.com/anewell/pose-hg-demo
Chained Predictions Using Convolutional Neural Networks
- intro: EECV 2016
- keywords: CNN, structured prediction, RNN, human pose estimation
- arxiv: http://arxiv.org/abs/1605.02346
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
Real-time Human Pose Estimation from Video with Convolutional Neural Networks
Region Ensemble Network: Improving Convolutional Network for Hand Pose Estimation
Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources
- project page: https://www.adrianbulat.com/binary-cnn-landmarks
- arxiv: https://www.arxiv.org/abs/1703.00862
Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation
- arxiv: https://arxiv.org/abs/1705.00389
- video: http://v.qq.com/x/page/c039862eira.html
- video: http://v.qq.com/x/page/f0398zcvkl5.html
- video: http://v.qq.com/x/page/w0398ei9m1r.html
Human Pose Detection Mining Body Language from Videos
OpenPose: A Real-Time Multi-Person Keypoint Detection And Multi-Threading C++ Library
- intro: OpenPose is a library for real-time multi-person keypoint detection and multi-threading written in C++ using OpenCV and Caffe
- github: https://github.com/CMU-Perceptual-Computing-Lab/openpose
Learning Feature Pyramids for Human Pose Estimation
Multi-Context Attention for Human Pose Estimation
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1702.07432
- github(Torch): https://github.com/bearpaw/pose-attention
Human Pose Estimation with TensorFlow
https://github.com/eldar/pose-tensorflow
Sentiment Prediction
From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction
- arxiv: http://arxiv.org/abs/1604.03489
- github: https://github.com/imatge-upc/sentiment-2016
- gitxiv: http://gitxiv.com/posts/ruqRgXdPTHJ77LDEb/from-pixels-to-sentiment-fine-tuning-cnns-for-visual
Predict Sentiment From Movie Reviews Using Deep Learning
Neural Sentiment Classification with User and Product Attention
- intro: EMNLP 2016
- paper: http://www.thunlp.org/~chm/publications/emnlp2016_NSCUPA.pdf
- github: https://github.com/thunlp/NSC
From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction
- intro: Accepted for publication in Image and Vision Computing
- arxiv: https://arxiv.org/abs/1604.03489
- github: https://github.com/imatge-upc/sentiment-2016
Place Recognition
NetVLAD: CNN architecture for weakly supervised place recognition
- intro: CVPR 2016
- intro: Google Street View Time Machine, soft-assignment, Weakly supervised triplet ranking loss
- homepage: http://www.di.ens.fr/willow/research/netvlad/
- arxiv: http://arxiv.org/abs/1511.07247
PlaNet - Photo Geolocation with Convolutional Neural Networks
- arxiv: http://arxiv.org/abs/1602.05314
- review(“Google Unveils Neural Network with “Superhuman” Ability to Determine the Location of Almost Any Image”): https://www.technologyreview.com/s/600889/google-unveils-neural-network-with-superhuman-ability-to-determine-the-location-of-almost/
- github(“City-Recognition: CS231n Project for Winter 2016”): https://github.com/dmakian/LittlePlaNet
- github: https://github.com/wulfebw/LittlePlaNet-Models
Visual place recognition using landmark distribution descriptors
Low-effort place recognition with WiFi fingerprints using deep learning
- arxiv: https://arxiv.org/abs/1611.02049
- github: https://github.com/aqibsaeed/Place-Recognition-using-Autoencoders-and-NN
- github(Keras): https://github.com/mallsk23/place_recognition_wifi_fingerprints_deep_learning
Deep Learning Features at Scale for Visual Place Recognition
- intro: ICRA 2017
- arxiv: https://arxiv.org/abs/1701.05105
Place recognition: An Overview of Vision Perspective
https://arxiv.org/abs/1707.03470
Camera Relocalization
PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization
- paper: http://arxiv.org/abs/1505.07427
- project page: http://mi.eng.cam.ac.uk/projects/relocalisation/#results
- github: https://github.com/alexgkendall/caffe-posenet
- github(TensorFlow): https://github.com/kentsommer/tensorflow-posenet
Modelling Uncertainty in Deep Learning for Camera Relocalization
Random Forests versus Neural Networks - What’s Best for Camera Relocalization?
Deep Convolutional Neural Network for 6-DOF Image Localization
Image-based Localization with Spatial LSTMs
VidLoc: 6-DoF Video-Clip Relocalization
Towards CNN Map Compression for camera relocalisation
Camera Relocalization by Computing Pairwise Relative Poses Using Convolutional Neural Network
- intro: Aalto University & Indian Institute of Technology
- arxiv: https://arxiv.org/abs/1707.09733
Counting Objects
Towards perspective-free object counting with deep learning
- intro: ECCV 2016. Counting CNN and Hydra CNN
- paper: http://agamenon.tsc.uah.es/Investigacion/gram/publications/eccv2016-onoro.pdf
- github: https://github.com/gramuah/ccnn
- poster: http://www.eccv2016.org/files/posters/P-3B-26.pdf
Using Convolutional Neural Networks to Count Palm Trees in Satellite Images
Count-ception: Counting by Fully Convolutional Redundant Counting
https://arxiv.org/abs/1703.08710
Counting Objects with Faster R-CNN
- blog: https://softwaremill.com/counting-objects-with-faster-rcnn/
- github: https://github.com/softberries/keras-frcnn
Drone-based Object Counting by Spatially Regularized Regional Proposal Network
https://arxiv.org/abs/1707.05972
FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras
- intro: ICCV 2017. CMU & Universidade de Lisboa
- arxiv: https://arxiv.org/abs/1707.09476
Crowd Counting / Crowd Analysis
Large scale crowd analysis based on convolutional neural network
Deep People Counting in Extremely Dense Crowds
- intro: ACM 2015
- paper: http://yangliang.github.io/pdf/sp055u.pdf
Crossing-line Crowd Counting with Two-phase Deep Neural Networks
- intro: ECCV 2016
- paper: http://www.ee.cuhk.edu.hk/~rzhao/project/crossline_eccv16/ZhaoLZWeccv16.pdf
- poster: http://www.eccv2016.org/files/posters/P-3C-41.pdf
Cross-scene Crowd Counting via Deep Convolutional Neural Networks
- intro: CVPR 2015
- paper: http://www.ee.cuhk.edu.hk/~xgwang/papers/zhangLWYcvpr15.pdf
Single-Image Crowd Counting via Multi-Column Convolutional Neural Network
- intro: CVPR 2016
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.pdf
- paper: http://sist.shanghaitech.edu.cn/office/research/news/CVPR2016/paper/Single-Image%20Crowd%20Counting%20via%20Multi-Column%20Convolutional%20Neural%20Network.pdf
- dataset(pwd: p1rv): http://pan.baidu.com/s/1gfyNBTh
- slides: http://smartdsp.xmu.edu.cn/%E6%B1%87%E6%8A%A5pdf/crowd%20counting%E6%9E%97%E8%B4%A8%E9%94%90.pdf
CrowdNet: A Deep Convolutional Network for Dense Crowd Counting
- intro: ACM Multimedia (MM) 2016
- arxiv: http://arxiv.org/abs/1608.06197
Crowd Counting by Adapting Convolutional Neural Networks with Side Information
Fully Convolutional Crowd Counting On Highly Congested Scenes
- intro: VISAPP 2017
- arxiv: https://arxiv.org/abs/1612.00220
Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction
- intro: AAAI 2017
- project page: https://www.microsoft.com/en-us/research/publication/deep-spatio-temporal-residual-networks-for-citywide-crowd-flows-prediction/
- paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/ST-ResNet-AAAI17-Zhang.pdf
- github: https://github.com/lucktroy/DeepST/tree/master/scripts/papers/AAAI17
- ppt: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/DeepST-crowd-prediction.pptx
- system: http://urbanflow.sigkdd.com.cn/
Multi-scale Convolutional Neural Networks for Crowd Counting
Mixture of Counting CNNs: Adaptive Integration of CNNs Specialized to Specific Appearance for Crowd Counting
https://arxiv.org/abs/1703.09393
Beyond Counting: Comparisons of Density Maps for Crowd Analysis Tasks - Counting, Detection, and Tracking
https://arxiv.org/abs/1705.10118
ResnetCrowd: A Residual Deep Learning Architecture for Crowd Counting, Violent Behaviour Detection and Crowd Density Level Classification
- intro: AVSS 2017
- arxiv: https://arxiv.org/abs/1705.10698
Image Crowd Counting Using Convolutional Neural Network and Markov Random Field
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1706.03725
A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation
https://arxiv.org/abs/1707.01202
Spatiotemporal Modeling for Crowd Counting in Videos
- intro: ICCV 2017
- arxiv: https://arxiv.org/abs/1707.07890
CNN-based Cascaded Multi-task Learning of High-level Prior and Density Estimation for Crowd Counting
- intro: AVSS 2017 (14th International Conference on Advanced Video and Signal Based Surveillance)
- arxiv: https://arxiv.org/abs/1707.09605
Switching Convolutional Neural Network for Crowd Counting
- intro: CVPR 2017. Indian Institute of Science
- project page: http://val.serc.iisc.ernet.in/crowdcnn/
- arxiv: https://arxiv.org/abs/1708.00199
- github: https://github.com/val-iisc/crowd-counting-scnn
Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs
- intro: ICCV 2017
- arxiv: https://arxiv.org/abs/1708.00953
Activity Recognition
Implementing a CNN for Human Activity Recognition in Tensorflow
- blog: http://aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/
- github: https://github.com/aqibsaeed/Human-Activity-Recognition-using-CNN
Concurrent Activity Recognition with Multimodal CNN-LSTM Structure
CERN: Confidence-Energy Recurrent Network for Group Activity Recognition
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1704.03058
Deploying Tensorflow model on Andorid device for Human Activity Recognition
- blog: http://aqibsaeed.github.io/2017-05-02-deploying-tensorflow-model-andorid-device-human-activity-recognition/
- github: https://github.com/aqibsaeed/Human-Activity-Recognition-using-CNN/tree/master/ActivityRecognition
Music Classification / Sound Classification
Explaining Deep Convolutional Neural Networks on Music Classification
- arxiv: http://arxiv.org/abs/1607.02444
- blog: https://keunwoochoi.wordpress.com/2015/12/09/ismir-2015-lbd-auralisation-of-deep-convolutional-neural-networks-listening-to-learned-features-auralization/
- blog: https://keunwoochoi.wordpress.com/2016/03/23/what-cnns-see-when-cnns-see-spectrograms/
- github: https://github.com/keunwoochoi/Auralisation
- audio samples: https://soundcloud.com/kchoi-research
Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification
- project page: http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html
- arxiv: http://arxiv.org/abs/1608.04363
Convolutional Recurrent Neural Networks for Music Classification
- arxiv: http://arxiv.org/abs/1609.04243
- blog: https://keunwoochoi.wordpress.com/2016/09/15/paper-is-out-convolutional-recurrent-neural-networks-for-music-classification/
- github: https://github.com/keunwoochoi/music-auto_tagging-keras
CNN Architectures for Large-Scale Audio Classification
- intro: Google
- arxiv: https://arxiv.org/abs/1609.09430
- demo: https://www.youtube.com/watch?v=oAAo_r7ZT8U&feature=youtu.be
SoundNet: Learning Sound Representations from Unlabeled Video
- intro: MIT. NIPS 2016
- project page: http://projects.csail.mit.edu/soundnet/
- arxiv: https://arxiv.org/abs/1610.09001
- paper: http://web.mit.edu/vondrick/soundnet.pdf
- github: https://github.com/cvondrick/soundnet
- github: https://github.com/eborboihuc/SoundNet-tensorflow
- youtube: https://www.youtube.com/watch?v=yJCjVvIY4dU
Deep Learning ‘ahem’ detector
- github: https://github.com/worldofpiggy/deeplearning-ahem-detector
- slides: https://docs.google.com/presentation/d/1QXQEOiAMj0uF2_Gafr2bn-kMniUJAIM1PLTFm1mUops/edit#slide=id.g35f391192_00
- mirror: https://pan.baidu.com/s/1c2KGlwO
GenreFromAudio: Finding the genre of a song with Deep Learning
- intro: A pipeline to build a dataset from your own music library and use it to fill the missing genres
- github: https://github.com/despoisj/DeepAudioClassification
TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition
- arxiv: https://arxiv.org/abs/1703.10667
- github: https://github.com/chihyaoma/Activity-Recognition-with-CNN-and-RNN
On the Robustness of Deep Convolutional Neural Networks for Music Classification
- intro: Queen Mary University of London & New York University
- arxiv: https://arxiv.org/abs/1706.02361
NSFW Detection / Classification
Nipple Detection using Convolutional Neural Network
Applying deep learning to classify pornographic images and videos
MODERATE, FILTER, OR CURATE ADULT CONTENT WITH CLARIFAI’S NSFW MODEL
WHAT CONVOLUTIONAL NEURAL NETWORKS LOOK AT WHEN THEY SEE NUDITY
- blog: http://blog.clarifai.com/what-convolutional-neural-networks-see-at-when-they-see-nudity#.VzVh_-yECZY
Open Sourcing a Deep Learning Solution for Detecting NSFW Images
- intro: Yahoo
- blog: https://yahooeng.tumblr.com/post/151148689421/open-sourcing-a-deep-learning-solution-for
- github: https://github.com/yahoo/open_nsfw
Miles Deep - AI Porn Video Editor
- intro: Deep Learning Porn Video Classifier/Editor with Caffe
- github: https://github.com/ryanjay0/miles-deep
Image Reconstruction / Inpainting
Context Encoders: Feature Learning by Inpainting
- intro: CVPR 2016
- intro: Unsupervised Feature Learning by Image Inpainting using GANs
- project page: http://www.cs.berkeley.edu/~pathak/context_encoder/
- arxiv: https://arxiv.org/abs/1604.07379
- github(official): https://github.com/pathak22/context-encoder
- github: https://github.com/BoyuanJiang/context_encoder_pytorch
Semantic Image Inpainting with Perceptual and Contextual Losses
- keywords: Deep Convolutional Generative Adversarial Network (DCGAN)
- arxiv: http://arxiv.org/abs/1607.07539
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
- intro: University of Southern California & Adobe Research
- arxiv: https://arxiv.org/abs/1611.09969
Face Image Reconstruction from Deep Templates
https://www.arxiv.org/abs/1703.00832
Image Restoration
Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections
- intro: NIPS 2016
- arxiv: http://arxiv.org/abs/1603.09056
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections
Image Completion with Deep Learning in TensorFlow
Deeply Aggregated Alternating Minimization for Image Restoration
A New Convolutional Network-in-Network Structure and Its Applications in Skin Detection, Semantic Segmentation, and Artifact Reduction
- intro: Seoul National University
- arxiv: https://arxiv.org/abs/1701.06190
Generative Face Completion
- intro: CVPR 2017
- arxiv: https://arxiv.org/abs/1704.05838
MemNet: A Persistent Memory Network for Image Restoration
- intro: ICCV 2017 (Spotlight presentation)
- arxiv: https://arxiv.org/abs/1708.02209
- github: https://github.com/tyshiwo/MemNet
Image Super-Resolution
Super-Resolution.Benckmark
- intro: Benchmark and resources for single super-resolution algorithms
- github: https://github.com/huangzehao/Super-Resolution.Benckmark
Image Super-Resolution Using Deep Convolutional Networks
- intro: Microsoft Research
- project page: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
- arxiv: http://arxiv.org/abs/1501.00092
- training code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_train.zip
- test code: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN/SRCNN_v1.zip
- github(Keras): https://github.com/titu1994/Image-Super-Resolution
Learning a Deep Convolutional Network for Image Super-Resolution
- Baidu-pan: http://pan.baidu.com/s/1c0k0wRu
Shepard Convolutional Neural Networks
- paper: https://papers.nips.cc/paper/5774-shepard-convolutional-neural-networks.pdf
- github: https://github.com/jimmy-ren/vcnn_double-bladed/tree/master/applications/Shepard_CNN
Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution
- intro: NIPS 2015
- paper: https://papers.nips.cc/paper/5778-bidirectional-recurrent-convolutional-networks-for-multi-frame-super-resolution
Deeply-Recursive Convolutional Network for Image Super-Resolution
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1511.04491
- paper: http://cv.snu.ac.kr/publication/conf/2016/DRCN_CVPR2016.pdf
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
- intro: CVPR 2016 Oral
- project page: http://cv.snu.ac.kr/research/VDSR/
- arxiv: http://arxiv.org/abs/1511.04587
- code: http://cv.snu.ac.kr/research/VDSR/VDSR_code.zip
- github: https://github.com/huangzehao/caffe-vdsr
- github(Torch): https://github.com/pby5/vdsr_torch
Super-Resolution with Deep Convolutional Sufficient Statistics
Deep Depth Super-Resolution : Learning Depth Super-Resolution using Deep Convolutional Neural Network
Local- and Holistic- Structure Preserving Image Super Resolution via Deep Joint Component Learning
End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks
Accelerating the Super-Resolution Convolutional Neural Network
- intro: speed up of more than 40 times with even superior restoration quality, real-time performance on a generic CPU
- project page: http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
- arxiv: http://arxiv.org/abs/1608.00367
srez: Image super-resolution through deep learning
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
- arxiv: https://arxiv.org/abs/1609.04802
- github(Torch): https://github.com/leehomyc/Photo-Realistic-Super-Resoluton
- github: https://github.com/junhocho/SRGAN
- github(Keras): https://github.com/titu1994/Super-Resolution-using-Generative-Adversarial-Networks
- github: https://github.com/buriburisuri/SRGAN
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
- intro: CVPR 2016
- arxiv: http://arxiv.org/abs/1609.05158
- github: https://github.com/Tetrachrome/subpixel
Is the deconvolution layer the same as a convolutional layer?
- intro: A note on RealTime Single Image and Video SuperResolution Using an Efficient SubPixel Convolutional Neural Network.
- arxiv: http://arxiv.org/abs/1609.07009
Amortised MAP Inference for Image Super-resolution
Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation
Super-Resolution on Satellite Imagery using Deep Learning
Neural Enhance: Super Resolution for images using deep learning.
- github: https://github.com/alexjc/neural-enhance
- docker: https://github.com/alexjc/neural-enhance/blob/master/docker-cpu.df
Texture Enhancement via High-Resolution Style Transfer for Single-Image Super-Resolution
- intro: Digital Media & Communications R&D Center, Samsung Electronics, Seoul, Korea
- arxiv: https://arxiv.org/abs/1612.00085
EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis
Learning a Mixture of Deep Networks for Single Image Super-Resolution
- project page: http://www.ifp.illinois.edu/~dingliu2/accv2016/
- arxiv: https://arxiv.org/abs/1701.00823
- code: http://www.ifp.illinois.edu/~dingliu2/accv2016/codes/python_accv2016.zip
Dual Recovery Network with Online Compensation for Image Super-Resolution
Super-resolution Using Constrained Deep Texture Synthesis
- intro: Brown University & Georgia Institute of Technology
- arxiv: https://arxiv.org/abs/1701.07604
Pixel Recursive Super Resolution
- arxiv: https://arxiv.org/abs/1702.00783
- github(Tensorflow): https://github.com/nilboy/pixel-recursive-super-resolution
GUN: Gradual Upsampling Network for single image super-resolution
Single Image Super-resolution with a Parameter Economic Residual-like Convolutional Neural Network
- intro: Extentions of mmm 2017 paper
- arxiv: https://arxiv.org/abs/1703.08173
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
- intro: CVPR 2017
- project page(code+dataset): http://vllab1.ucmerced.edu/~wlai24/LapSRN/
- arxiv: https://arxiv.org/abs/1704.03915
- github(Matlab+MatConvNet): https://github.com/phoenix104104/LapSRN
Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network
- intro: South China University of Technology
- arxiv: https://arxiv.org/abs/1705.05084
Super-Resolution via Deep Learning
- intro: COMSATS Institute of IT (CIIT)
- arxiv: https://arxiv.org/abs/1706.09077
High-Quality Face Image SR Using Conditional Generative Adversarial Networks
https://arxiv.org/abs/1707.00737
Enhanced Deep Residual Networks for Single Image Super-Resolution
- intro: CVPR 2017 workshop. Best paper award of the NTIRE2017 workshop, and the winners of the NTIRE2017 Challenge on Single Image Super-Resolution
- arxiv: https://arxiv.org/abs/1707.02921
- paper: http://cv.snu.ac.kr/publication/conf/2017/EDSR_fixed.pdf
- github: https://github.com/LimBee/NTIRE2017
Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network
- arxiv: https://arxiv.org/abs/1707.05425
- github(Tensorflow): https://github.com/jiny2001/dcscn-super-resolution
Single Image Super-Resolution with Dilated Convolution based Multi-Scale Information Learning Inception Module
- intro: ICIP 2017
- arxiv: https://arxiv.org/abs/1707.07128
Attention-Aware Face Hallucination via Deep Reinforcement Learning
https://arxiv.org/abs/1708.03132
Video Super-resolution
Detail-revealing Deep Video Super-resolution
End-to-End Learning of Video Super-Resolution with Motion Compensation
- intro: GCPR 2017
- arxiv: https://arxiv.org/abs/1707.00471
Image Denoising
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
- arxiv: http://arxiv.org/abs/1608.03981
- github: https://github.com/cszn/DnCNN
Medical image denoising using convolutional denoising autoencoders
Rectifier Neural Network with a Dual-Pathway Architecture for Image Denoising
Non-Local Color Image Denoising with Convolutional Neural Networks
Joint Visual Denoising and Classification using Deep Learning
- intro: ICIP 2016
- arxiv: https://arxiv.org/abs/1612.01075
- github: https://github.com/ganggit/jointmodel
Deep Convolutional Denoising of Low-Light Images
Deep Class Aware Denoising
End-to-End Learning for Structured Prediction Energy Networks
- intro: University of Massachusetts & CMU
- arxiv: https://arxiv.org/abs/1703.05667
Block-Matching Convolutional Neural Network for Image Denoising
https://arxiv.org/abs/1704.00524
When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach
https://arxiv.org/abs/1706.04284
Wide Inference Network for Image Denoising
https://arxiv.org/abs/1707.05414
Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising
- arxiv: https://arxiv.org/abs/1707.09135
- github(MatConvNet): https://github.com/cswin/WIN
Image Denoising via CNNs: An Adversarial Approach
- intro: Indian Institute of Science
- arxiv: https://arxiv.org/abs/1708.00159
Image Haze Removal
DehazeNet: An End-to-End System for Single Image Haze Removal
An All-in-One Network for Dehazing and Beyond
- intro: All-in-One Dehazing Network (AOD-Net)
- arxiv: https://arxiv.org/abs/1707.06543
Joint Transmission Map Estimation and Dehazing using Deep Networks
https://arxiv.org/abs/1708.00581
Image Rain Removal / De-raining
Clearing the Skies: A deep network architecture for single-image rain removal
- intro: DerainNet
- project page: http://smartdsp.xmu.edu.cn/derainNet.html
- arxiv: http://arxiv.org/abs/1609.02087
- code(Matlab): http://smartdsp.xmu.edu.cn/memberpdf/fuxueyang/derainNet/code.zip
Joint Rain Detection and Removal via Iterative Region Dependent Multi-Task Learning
Image De-raining Using a Conditional Generative Adversarial Network
Fence Removal
Deep learning based fence segmentation and removal from an image using a video sequence
- intro: ECCV Workshop on Video Segmentation, 2016
- arxiv: http://arxiv.org/abs/1609.07727
Blur Detection and Removal
Learning to Deblur
Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal
End-to-End Learning for Image Burst Deblurring
Deep Video Deblurring
- intro: CVPR 2017 spotlight paper
- project page(code+dataset): http://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring/
- arxiv: https://arxiv.org/abs/1611.08387 https://github.com/shuochsu/DeepVideoDeblurring
Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring
- arxiv: https://arxiv.org/abs/1612.02177
- github(official. Torch)): https://github.com/SeungjunNah/DeepDeblur_release
From Motion Blur to Motion Flow: a Deep Learning Solution for Removing Heterogeneous Motion Blur
Motion Deblurring in the Wild
Deep Face Deblurring
https://arxiv.org/abs/1704.08772
Learning Blind Motion Deblurring
- intro: ICCV 2017
- arxiv: https://arxiv.org/abs/1708.04208
Image Compression
An image compression and encryption scheme based on deep learning
Full Resolution Image Compression with Recurrent Neural Networks
- arxiv: http://arxiv.org/abs/1608.05148
- github: https://github.com/tensorflow/models/tree/master/compression
Image Compression with Neural Networks
Lossy Image Compression With Compressive Autoencoders
- paper: http://openreview.net/pdf?id=rJiNwv9gg
- review: http://qz.com/835569/twitter-is-getting-close-to-making-all-your-pictures-just-a-little-bit-smaller/
End-to-end Optimized Image Compression
- arxiv: https://arxiv.org/abs/1611.01704
- notes: https://blog.acolyer.org/2017/05/08/end-to-end-optimized-image-compression/
CAS-CNN: A Deep Convolutional Neural Network for Image Compression Artifact Suppression
Semantic Perceptual Image Compression using Deep Convolution Networks
- intro: Accepted to Data Compression Conference
- intro: Semantic JPEG image compression using deep convolutional neural network (CNN)
- arxiv: https://arxiv.org/abs/1612.08712
- github: https://github.com/iamaaditya/image-compression-cnn
Generative Compression
- intro: MIT
- arxiv: https://arxiv.org/abs/1703.01467
Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
https://arxiv.org/abs/1703.10114
Learning Convolutional Networks for Content-weighted Image Compression
https://arxiv.org/abs/1703.10553
Real-Time Adaptive Image Compression
- intro: ICML 2017
- keywords: GAN
- project page: http://www.wave.one/icml2017
- arxiv: https://arxiv.org/abs/1705.05823
Image Quality Assessment
Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
Image Matting
Deep Image Matting
- intro: CVPR 2017
- intro: Beckman Institute for Advanced Science and Technology & Adobe Research
- arxiv: https://arxiv.org/abs/1703.03872
Fast Deep Matting for Portrait Animation on Mobile Phone
- intro: ACM Multimedia Conference (MM) 2017
- intro: does not need any interaction and can realize real-time matting with 15 fps
- arxiv: https://arxiv.org/abs/1707.08289
Image Blending
GP-GAN: Towards Realistic High-Resolution Image Blending
- project page: https://wuhuikai.github.io/GP-GAN-Project/
- arxiv: https://arxiv.org/abs/1703.07195
- github(Official, Chainer): https://github.com/wuhuikai/GP-GAN
Image Enhancement
Deep Bilateral Learning for Real-Time Image Enhancement
- intro: MIT & Google Research
- arxiv: https://arxiv.org/abs/1707.02880
Aesthetic-Driven Image Enhancement by Adversarial Learning
- intro: CUHK
- arxiv: https://arxiv.org/abs/1707.05251
Abnormality Detection / Anomaly Detection
Toward a Taxonomy and Computational Models of Abnormalities in Images
Depth Prediction / Depth Estimation
Deep Convolutional Neural Fields for Depth Estimation from a Single Image
- intro: CVPR 2015
- arxiv: https://arxiv.org/abs/1411.6387
Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields
- intro: IEEE T. Pattern Analysis and Machine Intelligence
- arxiv: https://arxiv.org/abs/1502.07411
- bitbucket: https://bitbucket.org/fayao/dcnf-fcsp
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue
- intro: ECCV 2016
- arxiv: https://arxiv.org/abs/1603.04992
- github: https://github.com/Ravi-Garg/Unsupervised_Depth_Estimation
Depth from a Single Image by Harmonizing Overcomplete Local Network Predictions
- intro: NIPS 2016
- project pag: http://ttic.uchicago.edu/~ayanc/mdepth/
- arxiv: http://arxiv.org/abs/1605.07081
- github: https://github.com/ayanc/mdepth/
Deeper Depth Prediction with Fully Convolutional Residual Networks
Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference
https://arxiv.org/abs/1705.00534
Monocular Depth Estimation with Hierarchical Fusion of Dilated CNNs and Soft-Weighted-Sum Inference
- intro: Northwestern Polytechnical University
- arxiv: https://arxiv.org/abs/1708.02287
Texture Synthesis
Texture Synthesis Using Convolutional Neural Networks
Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
- intro: IMCL 2016
- arxiv: http://arxiv.org/abs/1603.03417
- github: https://github.com/DmitryUlyanov/texture_nets
- notes: https://blog.acolyer.org/2016/09/23/texture-networks-feed-forward-synthesis-of-textures-and-stylized-images/
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
- arxiv: http://arxiv.org/abs/1604.04382
- github(Torch): https://github.com/chuanli11/MGANs
Texture Synthesis with Spatial Generative Adversarial Networks
Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis
- intro: Skolkovo Institute of Science and Technology & Yandex & University of Oxford
- arxiv: https://arxiv.org/abs/1701.02096
Deep TEN: Texture Encoding Network
- intro: CVPR 2017
- project page: http://zhanghang1989.github.io/DeepEncoding/
- arxiv: https://arxiv.org/abs/1612.02844
- github: https://github.com/zhanghang1989/Deep-Encoding
- notes: https://zhuanlan.zhihu.com/p/25013378
Diversified Texture Synthesis with Feed-forward Networks
- intro: CVPR 2017. University of California & Adobe Research
- arxiv: https://arxiv.org/abs/1703.01664
- github: https://github.com/Yijunmaverick/MultiTextureSynthesis
Image Synthesis
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis
Generative Adversarial Text to Image Synthesis
- intro: ICML 2016
- arxiv: http://arxiv.org/abs/1605.05396
- github(Tensorflow): https://github.com/paarthneekhara/text-to-image
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
- intro: Rutgers University & Lehigh University & The Chinese University of Hong Kong & University of North Carolina at Charlotte
- arxiv: https://arxiv.org/abs/1612.03242
- github: https://github.com/hanzhanggit/StackGAN
- github: https://github.com/brangerbriz/docker-StackGAN
Image Tagging
Fast Zero-Shot Image Tagging
Flexible Image Tagging with Fast0Tag
Sampled Image Tagging and Retrieval Methods on User Generated Content
- arxiv: https://arxiv.org/abs/1611.06962
- github: https://github.com/lab41/attalos
Image Matching
Learning Fine-grained Image Similarity with Deep Ranking
- intro: CVPR 2014
- intro: Triplet Sampling
- arxiv: http://arxiv.org/abs/1404.4661
Learning to compare image patches via convolutional neural networks
- intro: CVPR 2015. siamese network
- project page: http://imagine.enpc.fr/~zagoruys/deepcompare.html
- paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zagoruyko_Learning_to_Compare_2015_CVPR_paper.pdf
- github: https://github.com/szagoruyko/cvpr15deepcompare
MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching
- intro: CVPR 2015. siamese network
- paper: http://www.cs.unc.edu/~xufeng/cs/papers/cvpr15-matchnet.pdf
- extended abstract: http://www.cv-foundation.org/openaccess/content_cvpr_2015/ext/2A_114_ext.pdf
- github: https://github.com/hanxf/matchnet
Fashion Style in 128 Floats
- intro: CVPR 2016. StyleNet
- project page: http://hi.cs.waseda.ac.jp/~esimo/en/research/stylenet/
- paper: http://hi.cs.waseda.ac.jp/~esimo/publications/SimoSerraCVPR2016.pdf
- github: https://github.com/bobbens/cvpr2016_stylenet
Fully-Trainable Deep Matching
- intro: BMVC 2016
- project page: http://lear.inrialpes.fr/src/deepmatching/
- arxiv: http://arxiv.org/abs/1609.03532
Local Similarity-Aware Deep Feature Embedding
- intro: NIPS 2016
- arxiv: https://arxiv.org/abs/1610.08904
Convolutional neural network architecture for geometric matching
- intro: CVPR 2017. Inria
- project page: http://www.di.ens.fr/willow/research/cnngeometric/
- arxiv: https://arxiv.org/abs/1703.05593
- github: https://github.com/ignacio-rocco/cnngeometric_matconvnet
Image Editing
Neural Photo Editing with Introspective Adversarial Networks
- intro: Heriot-Watt University
- arxiv: http://arxiv.org/abs/1609.07093
- github: https://github.com/ajbrock/Neural-Photo-Editor
Deep Feature Interpolation for Image Content Changes
- intro: CVPR 2017. Cornell University & Washington University
- arxiv: https://arxiv.org/abs/1611.05507
- github(official): https://github.com/paulu/deepfeatinterp
- github: https://github.com/slang03/dfi-tensorflow
Invertible Conditional GANs for image editing
- intro: NIPS 2016 Workshop on Adversarial Training
- arxiv: https://arxiv.org/abs/1611.06355
- github: https://github.com/Guim3/IcGAN
Semantic Facial Expression Editing using Autoencoded Flow
- intro: University of Illinois at Urbana-Champaign & The Chinese University of Hong Kong & Google
- arxiv: https://arxiv.org/abs/1611.09961
Face Swap
Fast Face-swap Using Convolutional Neural Networks
- intro: Ghent University & Twitter
- arxiv: https://arxiv.org/abs/1611.09577
Face Editing
Neural Face Editing with Intrinsic Image Disentangling
- intro: CVPR 2017 oral
- project page: http://www3.cs.stonybrook.edu/~cvl/content/neuralface/neuralface.html
- arxiv: https://arxiv.org/abs/1704.04131
Music Tagging
Automatic tagging using deep convolutional neural networks
- arxiv: https://arxiv.org/abs/1606.00298
- github: https://github.com/keunwoochoi/music-auto_tagging-keras
Music tagging and feature extraction with MusicTaggerCRNN
https://keras.io/applications/#music-tagging-and-feature-extraction-with-musictaggercrnn
Action Recognition
Single Image Action Recognition by Predicting Space-Time Saliency
https://arxiv.org/abs/1705.04641
CTR Prediction
Deep CTR Prediction in Display Advertising
- intro: ACM Multimedia Conference 2016
- arxiv: https://arxiv.org/abs/1609.06018
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
- intro: Harbin Institute of Technology & Huawei
- arxiv: https://arxiv.org/abs/1703.04247
Deep Interest Network for Click-Through Rate Prediction
- intro: Alibaba
- arxiv: https://arxiv.org/abs/1706.06978
Cryptography
Learning to Protect Communications with Adversarial Neural Cryptography
- intro: Google Brain
- arxiv: https://arxiv.org/abs/1610.06918
- github(Theano): https://github.com/nlml/adversarial-neural-crypt
- github(TensorFlow): https://github.com/ankeshanand/neural-cryptography-tensorflow
Adversarial Neural Cryptography in Theano
Embedding Watermarks into Deep Neural Networks
Cyber Security
Collection of Deep Learning Cyber Security Research Papers
Lip Reading
LipNet: Sentence-level Lipreading
LipNet: End-to-End Sentence-level Lipreading
- arxiv: https://arxiv.org/abs/1611.01599
- paper: http://openreview.net/pdf?id=BkjLkSqxg
- github: https://github.com/bshillingford/LipNet
Lip Reading Sentences in the Wild
- intro: University of Oxford & Google DeepMind
- arxiv: https://arxiv.org/abs/1611.05358
- youtube: https://www.youtube.com/watch?v=5aogzAUPilE
Combining Residual Networks with LSTMs for Lipreading
Event Recognition
Better Exploiting OS-CNNs for Better Event Recognition in Images
Transferring Object-Scene Convolutional Neural Networks for Event Recognition in Still Images
IOD-CNN: Integrating Object Detection Networks for Event Recognition
https://arxiv.org/abs/1703.07431
Others
Selfai: Predicting Facial Beauty in Selfies
Selfai: A Method for Understanding Beauty in Selfies
- blog: http://www.erogol.com/selfai-predicting-facial-beauty-selfies/
- github: https://github.com/erogol/beauty.torch
Deep Learning Enables You to Hide Screen when Your Boss is Approaching
- blog: http://ahogrammer.com/2016/11/15/deep-learning-enables-you-to-hide-screen-when-your-boss-is-approaching/
- github: https://github.com/Hironsan/BossSensor
Blogs
40 Ways Deep Learning is Eating the World
Applications
http://www.deeplearningpatterns.com/doku.php/applications
Systematic Approach To Applications Of Deep Learning
https://gettocode.com/2016/11/25/systematic-approach-to-applications-of-deep-learning/
Resources
Deep Learning Gallery - a curated collection of deep learning projects