Papers
Learning Spatiotemporal Features with 3D Convolutional Networks (C3D: Generic Features for Video Analysis)
- project page: http://vlg.cs.dartmouth.edu/c3d/
- arxiv: http://arxiv.org/abs/1412.0767
- slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w07-conv3d.pdf
- github: https://github.com/facebook/C3D
C3D Model for Keras trained over Sports 1M
Sports 1M C3D Network to Keras
Deep End2End Voxel2Voxel Prediction
Aligning 3D Models to RGB-D Images of Cluttered Scenes
Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images
- homepage: http://dss.cs.princeton.edu/
- arxiv: http://arxiv.org/abs/1511.02300
Multi-view 3D Models from Single Images with a Convolutional Network
Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video
- arxiv: http://arxiv.org/abs/1511.09439
- project page: https://fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/monocular-human-pose/
- video: http://weibo.com/p/230444264a8772b7fff71cd23e40b8a88dcaad
RotationNet: Learning Object Classification Using Unsupervised Viewpoint Estimation
DeepContext
DeepContext: Context-Encoding Neural Pathways for 3D Holistic Scene Understanding
- paper: http://deepcontext.cs.princeton.edu/paper.pdf
- project page: http://deepcontext.cs.princeton.edu/
Volumetric and Multi-View CNNs for Object Classification on 3D Data
- homepage: http://graphics.stanford.edu/projects/3dcnn/
- arxiv: https://arxiv.org/abs/1604.03265
- github: https://github.com/charlesq34/3dcnn.torch
Deep3D
Deep3D: Automatic 2D-to-3D Video Conversion with CNNs
- project page: http://dmlc.ml/mxnet/2016/04/04/deep3d-automatic-2d-to-3d-conversion-with-CNN.html
- paper: http://homes.cs.washington.edu/~jxie/pdf/deep3d.pdf
- github: https://github.com/piiswrong/deep3d
Deep3D: Fully Automatic 2D-to-3D Video Conversion with Deep Convolutional Neural Networks
3D-R2N2
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Projects
StereoConvNet: Stereo convolutional neural network for depth map prediction from stereo images