Papers
Mondrian Forests: Efficient Online Random Forests
- arxiv: http://arxiv.org/abs/1406.2673
- github: https://github.com/balajiln/mondrianforest
- video: http://videolectures.net/sahd2014_teh_mondrian_forests/
Food-101 – Mining Discriminative Components with Random Forests
Bernoulli Random Forests: Closing the Gap between Theoretical Consistency and Empirical Soundness (IJCAI 2016)
TensorForest: Scalable Random Forests on TensorFlow
- intro: Google Inc. NIPS 2016
- paper: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxtbHN5c25pcHMyMDE2fGd4OjFlNTRiOWU2OGM2YzA4MjE
- github: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/tensor_forest
ggRandomForests: Exploring Random Forest Survival
- intro: ggRandomForests: Visually Exploring Random Forests
- arxiv: https://arxiv.org/abs/1612.08974
- package(R): https://cran.r-project.org/web/packages/ggRandomForests/index.html
- github: https://github.com/ehrlinger/ggRandomForests
Resources
AWESOME-RANDOM-FOREST - a curated list of resources regarding random forest
- blog: http://jiwonkim.org/awesome-random-forest/
- github: https://github.com/kjw0612/awesome-random-forest
Blogs
The Unreasonable Effectiveness of Random Forests
- blog: https://medium.com/rants-on-machine-learning/the-unreasonable-effectiveness-of-random-forests-f33c3ce28883
- mirror: http://pan.baidu.com/s/1gd6dsMR
Random forest interpretation with scikit-learn
- blog: http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/
- github: https://github.com/andosa/treeinterpreter
Machine learning - Random forests (by Nando de Freitas)
- youtube: https://www.youtube.com/watch?v=3kYujfDgmNk&hd=1
- lectures: http://www.cs.ubc.ca/~nando/540-2013/lectures.html
A tour of random forests
https://codewords.recurse.com/issues/seven/a-tour-of-random-forests
Projects
Random Forest demo in Javascript
- demo: http://cs.stanford.edu/people/karpathy/svmjs/demo/demoforest.html
- github: https://github.com/karpathy/forestjs
ParallelForest: Random Forest Classification with Parallel Computing
- intro: R package implementing random forest classification using parallel computing, built with Fortran and OpenMP in the backend.
- project page: https://cran.r-project.org/web/packages/ParallelForest/vignettes/ParallelForest-intro.html
- github: https://github.com/bert9bert/ParallelForest