Courses
Courses on machine learning
http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/MLPAGES/mlcourses.htm
CSC2535 – Spring 2013 Advanced Machine Learning
- instructor: by Hinton, University of Toronto
- homepage: http://www.cs.toronto.edu/~hinton/csc2535/
Stanford CME 323: Distributed Algorithms and Optimization
http://stanford.edu/~rezab/dao/
University at Buffalo CSE574: Machine Learning and Probabilistic Graphical Models Course
http://www.cedar.buffalo.edu/~srihari/CSE574/
Stanford CS229: Machine Learning Autumn 2015
- instructor: Andrew Ng
- homepage: http://cs229.stanford.edu/
- project page: http://cs229.stanford.edu/projects2015.html
Stanford / Winter 2014-2015 CS229T/STATS231: Statistical Learning Theory
- instructor: Percy Liang
- homepage: http://web.stanford.edu/class/cs229t/
- lecture notes: http://web.stanford.edu/class/cs229t/notes.pdf
CMU Fall 2015 10-715: Advanced Introduction to Machine Learning
- instructor: Alex Smola, Barnabas Poczos
- homepage: http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/
- video: http://pan.baidu.com/s/1qWvcsUS
2015 Machine Learning Summer School: Convex Optimization Short Course
- instructor: S. Boyd and S. Diamond
- Lecture slides and IPython notebooks: https://stanford.edu/~boyd/papers/cvx_short_course.html
STA 4273H (Winter 2015): Large Scale Machine Learning
http://www.cs.toronto.edu/~rsalakhu/STA4273_2015/
University of Oxford: Machine Learning: 2014-2015
- homepage: https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
- course materials: https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
- lectures: http://pan.baidu.com/s/1bndbxJh#path=%252FDeep%2520Learning%2520Lectures
- github: https://github.com/oxford-cs-ml-2015/
Computer Science 294: Practical Machine Learning (Fall 2009)
- instructor: Michael Jordan
- homepage: https://www.cs.berkeley.edu/~jordan/courses/294-fall09/
Statistics, Probability and Machine Learning Short Course
- homepage: http://www-staff.it.uts.edu.au/~ydxu/statistics.htm
- youku: http://i.youku.com/u/UMzIzNDgxNTg5Ng
- youbube: https://www.youtube.com/playlist?list=PLFze15KrfxbF0n1zTNoFIaDpxnSyfgNgc
Statistical Learning
https://lagunita.stanford.edu/courses/HumanitiesScience/StatLearning/Winter2014/about
Machine learning courses online
http://fastml.com/machine-learning-courses-online/
Build Intelligent Applications: Master machine learning fundamentals in five hands-on courses (Coursera)
https://www.coursera.org/specializations/machine-learning
Machine Learning
http://www.cs.ubc.ca/~nando/540-2013/lectures.html
Princeton Computer Science 598D: Overcoming Intractability in Machine Learning
http://www.cs.princeton.edu/courses/archive/spring15/cos598D/
Princeton Computer Science 511: Theoretical Machine Learning
- instructor: Rob Schapire
- homepage: http://www.cs.princeton.edu/courses/archive/spring14/cos511/schedule.html
MACHINE LEARNING FOR MUSICIANS AND ARTISTS
https://www.kadenze.com/courses/machine-learning-for-musicians-and-artists/info
CMSC 726: Machine Learning
MIT: 9.520: Statistical Learning Theory and Applications, Fall 2015
http://www.mit.edu/~9.520/fall15/
CMU: Machine Learning: 10-701/15-781, Spring 2011
- instructor: Tom Mitchell
- homepage: http://www.cs.cmu.edu/~tom/10701_sp11/
- lectures: http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml
NLA 2015 course material
CS 189/289A: Introduction to Machine Learning(with videos)
- homepage: http://www.cs.berkeley.edu/~jrs/189/
An Introduction to Statistical Machine Learning Spring 2014 (for ACM Class)
http://bcmi.sjtu.edu.cn/log/courses/ml_2014_spring_acm.html
CS 159: Advanced Topics in Machine Learning (Spring 2016)
- intro: Online Learning, Multi-Armed Bandits, Active Learning, Human-in-the-Loop Learning, Reinforcement Learning
- instructor: Yisong Yue
- homepage: http://www.yisongyue.com/courses/cs159/
Advanced Statistical Computing (Vanderbilt University)
- intro: Course covers numerical optimization, Markov Chain Monte Carlo (MCMC), Metropolis-Hastings, Gibbs sampling, estimation-maximization (EM) algorithms, data augmentation algorithms with applications for model fitting and techniques for dealing with missing data
- homepage: http://stronginference.com/Bios8366/
- lecture: http://stronginference.com/Bios8366/lectures.html
- github: https://github.com/fonnesbeck/Bios8366
Stanford CS229: Machine Learning Spring 2016
- instructor: John Duchi
- homepage: http://cs229.stanford.edu/
- materials: http://cs229.stanford.edu/materials.html
Machine Learning: 2015-2016
- homepage: https://www.cs.ox.ac.uk/teaching/courses/2015-2016/ml/
- materials: http://www.cs.ox.ac.uk/people/varun.kanade/teaching/ML-HT2016/index.html
CS273a: Introduction to Machine Learning
- homepage: http://sli.ics.uci.edu/Classes/2015W-273a
- youtube: https://www.youtube.com/playlist?list=PLaXDtXvwY-oDvedS3f4HW0b4KxqpJ_imw
- course notes: http://sli.ics.uci.edu/Classes-CS178-Notes/Classes-CS178-Notes
Machine Learning CS-433
- homepage: http://mlo.epfl.ch/page-136795.html
- github: https://github.com/epfml/ML_course
Machine Learning Introduction: A machine learning course using Python, Jupyter Notebooks, and OpenML
https://github.com/joaquinvanschoren/ML-course
Machine Learning on Distributed System
Distributed Machine Learning with Apache Spark
- edx: https://prod-edx-mktg-edit.edx.org/course/distributed-machine-learning-apache-uc-berkeleyx-cs120x
PhD-level Courses (with video lectures)
Phd-level courses
Advanced Introduction to Machine Learning
- homepage: http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/index.html
- video: https://www.youtube.com/playlist?list=PL4DwY1suLMkcu-wytRDbvBNmx57CdQ2pJ&jct=q4qVgISGxJql7TlE6eSLKa8Wwci8SA
STA 4273H (Winter 2015): Large Scale Machine Learning
http://www.cs.toronto.edu/~rsalakhu/STA4273_2015/
Statistical Learning Theory and Applications (MIT)
- homepage: http://www.mit.edu/~9.520/fall15/index.html
- video: https://www.youtube.com/playlist?list=PLyGKBDfnk-iDj3FBd0Avr_dLbrU8VG73O
(REGML 2016) Regularization Methods for Machine Learning
- homepage: http://lcsl.mit.edu/courses/regml/regml2016/
- video: https://www.youtube.com/playlist?list=PLbF0BXX_6CPJ20Gf_KbLFnPWjFTvvRwCO
Convex Optimization: Spring 2015
- homepage: http://www.stat.cmu.edu/~ryantibs/convexopt-S15/
- video: https://www.youtube.com/playlist?list=PLjbUi5mgii6BZBhJ9nW7eydgycyCOYeZ6
CMU: Probabilistic Graphical Models (10-708, Spring 2014)
- instructor: Eric Xing
- homepage: http://www.cs.cmu.edu/~epxing/Class/10708/
- lecture: http://www.cs.cmu.edu/~epxing/Class/10708-14/lecture.html
Advanced Optimization and Randomized Methods
- instructor: A. Smola, S. Sra
- homepage: http://www.cs.cmu.edu/~suvrit/teach/index.html
Machine Learning for Robotics and Computer Vision
- homepage: http://vision.in.tum.de/teaching/ws2013/ml_ws13
- video: https://www.youtube.com/watch?v=QZmZFeZxEKI&list=PLTBdjV_4f-EIiongKlS9OKrBEp8QR47Wl
Statistical Machine Learning
- homepage: http://www.stat.cmu.edu/~larry/=sml/
- video: https://www.youtube.com/playlist?list=PLTB9VQq8WiaCBK2XrtYn5t9uuPdsNm7YE
- mirror: http://pan.baidu.com/s/1eSuJ1Nc
PhD-level Courses (without video lectures)
Probabilistic Graphical Models (10-708, Spring 2016)
http://www.cs.cmu.edu/~epxing/Class/10708-16/lecture.html
Resources
Learn Machine learning online – List of machine learning courses available online
awesomeMLmath
- intro: Curated list to learn the math basics for machine learning. Note that this is a biased list from a Deep Learning research.
- github: https://github.com/EderSantana/awesomeMLmath
MOOCs for Machine Learning
https://medium.com/@amarbudhiraja/moocs-for-machine-learning-5a2f2c6cdcfe#.1m2v38e0y