PCA
A Tutorial on Principal Component Analysis
Compressive PCA on Graphs
Robust Principal Component Analysis on Graphs
- arxiv: http://arxiv.org/abs/1504.06151
- project: https://lts2.epfl.ch/blog/nauman/recent-projects/
- code: http://pan.baidu.com/s/1gepgIUv
Fast Randomized PCA/SVD
- blog: https://research.facebook.com/blog/294071574113354/fast-randomized-svd/
- baidu-pan: http://pan.baidu.com/s/1nt8I8qt
- github: https://github.com/facebook/fbpca
Improper applications of Principal Component Analysis on multimodal data
Principal Component Analysis
- blog: http://setosa.io/ev/principal-component-analysis/
- homepage(“Explained Visually”): http://setosa.io/ev/
Fast Algorithms for Robust PCA via Gradient Descent
- arxiv: http://arxiv.org/abs/1605.07784
- code: https://people.orie.cornell.edu/yudong.chen/rpca_gd/RPCA_GD.zip
Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis
A Fast Factorization-based Approach to Robust PCA
PCA Tutorial
SVD
Feature Reduction using SVD
- blog: http://blog.applied.ai/feature-reduction-using-svd/
- ipn: http://nbviewer.jupyter.org/urls/bitbucket.org/appliedai/appliedai_svd/raw/02901de3aaa01be7b4536f484401113ddd5da8a9/01_FeatureReduction.ipynb
data-projector: Visualizing High-Dimensional Data in the Browser with SVD, t-SNE and Three.js
- github: https://github.com/datacratic/data-projector
- blog: http://datacratic.com/site/blog/visualizing-high-dimensional-data-browser-svd-t-sne-and-threejs
- demo: http://opensource.datacratic.com/data-projector/
RedSVD
- code: https://code.google.com/p/redsvd/
- github: https://github.com/handong1587/redsvd
- github: https://github.com/ntessore/redsvd-h
OpenCV 3.1.0: cv::SVD Class Reference
http://docs.opencv.org/3.1.0/df/df7/classcv_1_1SVD.html#gsc.tab=0
Singular Value Decomposition Part 1: Perspectives on Linear Algebra
- blog: https://jeremykun.com/2016/04/18/singular-value-decomposition-part-1-perspectives-on-linear-algebra/
Even Faster SVD Decomposition Yet Without Agonizing Pain
ICA
Independent component analysis
- blog: http://efavdb.com/independent-component-analysis/
- ipython notebook: http://nbviewer.jupyter.org/github/EFavDB/ICA/blob/master/pyaudio.ipynb
Projects
Decomposition module for Torch7: Component Analysis using Torch7 (PCA, Whitened PCA, LDA, LPP, NPP, FastICA)
Resources
Linear Dimensionality Reduction
- instructor: Percy Liang. CS294-10
- slides: http://vis.lbl.gov/~romano/mlgroup/papers/linear-dim-red.pdf
Readings and Questions
**What is better PCA or SVD | Reddit** |